If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/11^x=7(11^x)
We move all terms to the left:
7/11^x-(7(11^x))=0
Domain of the equation: 11^x!=0determiningTheFunctionDomain 7/11^x-711^x=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
-711^x*11^x+7=0
Wy multiply elements
-7821x^2+7=0
a = -7821; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-7821)·7
Δ = 218988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{218988}=\sqrt{36*6083}=\sqrt{36}*\sqrt{6083}=6\sqrt{6083}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6083}}{2*-7821}=\frac{0-6\sqrt{6083}}{-15642} =-\frac{6\sqrt{6083}}{-15642} =-\frac{\sqrt{6083}}{-2607} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6083}}{2*-7821}=\frac{0+6\sqrt{6083}}{-15642} =\frac{6\sqrt{6083}}{-15642} =\frac{\sqrt{6083}}{-2607} $
| 64=4y+16 | | 3(m=4)=5m | | w-1/5=-3/4 | | 2(x+3)^2=50 | | 24-12=4(x-2) | | X(x+8)=¥ | | 34=v/2+17 | | 5=w+8+2 | | 8/x-7=23 | | 1/9y+6=-16 | | 7(x–2)–4x=10 | | 10(y-4)=40 | | 21=x/7+6 | | n÷2+8=33 | | 3x+9-11x=-32 | | 3x^2=5+4x | | 3/2p=p+27 | | 32^n=16 | | 10/5=x+2/6 | | 3^(2-x)+3^(3-x)=12 | | 8x-7=23 | | 9÷x-3=3x÷x-3 | | 2x+8=-3x-22 | | 3×3+x=54 | | 3/3b+5=2/b-5 | | Y=28000+2.6x | | 7x-21=3 | | f2+3f=8−3f | | 14=21-14+7y | | 2x+6-5x-10=4 | | 2x+3(2,000-x)=55 | | 4w-4=12-4w |